11419 measured reflections

 $R_{\rm int} = 0.031$

2086 independent reflections

1776 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[2-(aminomethyl)pyridine- $\kappa^2 N, N'$]bis(thiocyanato- κN)copper(II)

Nirmal Kumar Karan, Kai-Ting Chan and Hon Man Lee*

National Changhua University of Education, Department of Chemistry, Changhua, Taiwan 50058

Correspondence e-mail: leehm@cc.ncue.edu.tw

Received 2 April 2009; accepted 9 April 2009

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.002 Å; R factor = 0.023; wR factor = 0.063; data-to-parameter ratio = 19.7.

In the title complex, $[Cu(NCS)_2(C_6H_8N_2)_2]$, the Cu^{II} atom, lying on an inversion center, adopts a Jahn-Teller distorted octahedral CuN₆ coordination geometry. The two bidentate 2aminomethylpyridine ligands are coordinated in a trans fashion, while the two thiocyanate ligands are at the axial positions and coordinate to the Cu atom in a bent mode with a C-N-Cu angle of 127.49 (10)°. Intermolecular N-H···N and N-H...S hydrogen bonds link the copper complex molecules into an infinite two-dimensional network.

Related literature

For six-coordinate trans-dithiocyanato Cu(II) complexes similar to the title complex, see: Garv et al. (2004); Ferrer et al. (1992); Gorji et al. (2001); Kozlowski & Hodgson (1975); Li & Zhang (2004).

Experimental

Crystal data

	0 -
$[Cu(NCS)_2(C_6H_8N_2)_2]$	V = 808.69 (6) Å ³
$M_r = 395.99$	Z = 2
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.1023 (4) Å	$\mu = 1.62 \text{ mm}^{-1}$
b = 9.1740 (4) Å	T = 150 K
c = 9.6895 (4) Å	$0.46 \times 0.38 \times 0.31 \text{ mm}$
$\beta = 91.872 \ (3)^{\circ}$	

Data collection

Bruker SMART APEXII diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.497, \ T_{\max} = 0.603$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	106 parameters
$wR(F^2) = 0.063$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
2086 reflections	$\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdots N3^{i}$	0.92	2.27	3.0717 (19)	145
$N2-H2B\cdots S1^{ii}$	0.92	2.60	3.4628 (13)	156

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We thank the National Science Council of Taiwan for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2151).

References

- Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ferrer, S., Haasnoot, J. G., Reedijk, J., Muller, E., Biagini-Cingi, M., Manotti-Lanfredi, A. M., Ugozzoli, F. & Foglia, C. (1992). J. Chem. Soc. Dalton Trans. pp. 3029-3034.
- Gary, J. B., Kautz, J. A., Klausmeyer, K. K. & Wong, C.-W. (2004). Acta Cryst. E60, m328-m329.

Gorji, A., Mahmoudkhani, A. H. M. & Amirnasr, M. (2001). Inorg. Chim. Acta, 315, 133-138.

Kozlowski, D. L. & Hodgson, D. L. (1975). J. Chem. Soc. Dalton Trans. pp. 55-58.

Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1597-m1598.

Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, m525 [doi:10.1107/S1600536809013427]

Bis[2-(aminomethyl)pyridine- $\kappa^2 N, N'$]bis(thiocyanato- κN)copper(II)

N. K. Karan, K.-T. Chan and H. M. Lee

Comment

The tilte complex was readily obtained from the reaction between copper(II) acetate, 2-aminomethylpyridine, and sodium thiocyanate. The complex consists of two *trans* bidentate ligands and two *trans* thiocyanate ligands (Fig. 1). It exhibits an octahedron coordination geometry at the Cu atom which is located on the inversion center. The bent coordination of thiocyanate results in the C5—N1—Cu1 bond angle of 127.49 (10)°. The pyridine ring is twisted from the equatorial plane defined by the Cu and the four N atoms; the interplanar angle is 17.86 (8)°. Intermolecular H-bonds of the type N—H···N and N—H···S exist, linking the complex into a into a two-dimensional hydrogen bonded network (Table 1).

Six-coordinate *trans*-dithiocyanato Cu(II) complexes similar to the title complex have been reported in the literature (Gary *et al.*, 2004; Ferrer *et al.*, 1992; Gorji *et al.*, 2001; Kozlowski & Hodgson, 1975; Li & Zhang, 2004).

Experimental

To a methanolic solution (10 ml) of $Cu(O_2CCH_3)_2$.H₂O (1.0 mmol, 0.199 g), a methanolic solution (10.0 ml) of 2-aminomethylpyridine (2.0 mmol, 0.207 ml) was added dropwise with stirring. Then to this mixture of solution, NaSCN (2.0 mmol, 0.162 g) in methanol (5.0 ml) was added and the mixture was stirred for 5 min. The solution was kept undisturbed. Blue crystals suitable for *X*-ray crystallography were obtained after one week by slow evaporation of the solvent.

Refinement

All the H atoms were positioned geometrically and refined as riding atoms, with N—H = 0.92, C_{aryl} —H = 0.95, $C_{methylene}$ —H = 0.99 Å while U_{iso} (H) = 1.2 U_{eq} (C or N) for all H atoms.

Figures

Fig. 1. The structure of the title complex, showing 50% displacement ellipsoids for non-H atoms. The H atoms are dipicted by circles of an arbitrary radius. The unlabelled atoms are related to the labelled ones by -x, 1 - y, 1 - z.

Fig. 2. A packing diagram of the title compound along the *a* axis. Hyrogen bonds are shown as dashed lines.

Bis[2-(aminomethyl)pyridine- $\kappa^2 N$, N']bis(thiocyanato- κN)copper(II)

Crystal data	
[Cu(NCS) ₂ (C ₆ H ₈ N ₂) ₂]	$F_{000} = 406$
$M_r = 395.99$	$D_{\rm x} = 1.626 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3360 reflections
a = 9.1023 (4) Å	$\theta = 3.1 - 28.0^{\circ}$
b = 9.1740 (4) Å	$\mu = 1.62 \text{ mm}^{-1}$
c = 9.6895 (4) Å	T = 150 K
$\beta = 91.872 \ (3)^{\circ}$	Plate, blue
$V = 808.69 (6) \text{ Å}^3$	$0.46\times0.38\times0.31~mm$
Z = 2	

Data collection

Bruker SMART APEXII diffractometer	2086 independent reflections
Radiation source: fine-focus sealed tube	1776 reflections with $I > 2\sigma$
Monochromator: graphite	$R_{\rm int} = 0.031$
T = 150 K	$\theta_{\text{max}} = 28.7^{\circ}$
ω scans	$\theta_{\min} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -12 \rightarrow 12$
$T_{\min} = 0.497, T_{\max} = 0.603$	$k = -12 \rightarrow 12$
11419 measured reflections	$l = -13 \rightarrow 12$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.023$ $wR(F^2) = 0.063$ Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $w = 1/[\sigma^2(F_o^2) + (0.0308P)^2 + 0.2097P]$ where $P = (F_o^2 + 2F_c^2)/3$

<i>S</i> = 1.13	$(\Delta/\sigma)_{max} < 0.001$
2086 reflections	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
106 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
Deinsens stern site 1. setiens starstens inconient diment	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У		z		Uiso*/	U_{eq}	
C1	0.27555 (16)	0.35413 (16)	0.35413 (16) 0.48964 (15)		(15)	0.015	1 (3)	
C2	0.41671 (16)	0.30420 (16)	0.30420 (16) 0.52349 (17) 0.0187 (3)		7 (3)			
H2	0.4607	0.2302		0.4701		0.022*	k	
C3	0.49184 (16)	0.36421 (17))	0.63614 ((17)	0.0199	9 (3)	
Н3	0.5878	0.3311		0.6618		0.024*	k	
C4	0.42557 (17)	0.47314 (17))	0.71109 ((17)	0.0190	0(3)	
H4	0.4759	0.5170		0.7878		0.023	k	
C5	0.28491 (17)	0.51688 (16))	0.67232 ((16)	0.0170	0(3)	
Н5	0.2395	0.5917		0.7236		0.0203	k	
C6	0.18680 (17)	0.29582 (17))	0.36793 ((16)	0.0188	8 (3)	
H6A	0.2513	0.2813		0.2888		0.023*	k	
H6B	0.1435	0.2005		0.3918		0.023*		
C7	-0.15576 (16)	0.17946 (16))	0.52438 (16)		0.0175 (3)		
Cu1	0.0000	0.5000		0.5000		0.01369 (8)		
N1	0.20991 (13)	0.45719 (14))	0.56437 ((13)	0.0142	2 (2)	
N2	0.06857 (13)	0.39999 (14))	0.32960 ((13)	0.016	1 (3)	
H2A	-0.0087	0.3513		0.2869		0.019	k	
H2B	0.1030	0.4680		0.2688		0.019*	k	
N3	-0.08726 (15)	0.26276 (15))	0.58955 ((15)	0.0244	4 (3)	
S1	-0.25589 (5)	0.06047 (5)		0.43612 ((4)	0.0260	01 (11)	
Atomic displacement	nt parameters (\AA^2	?)						
U	¹¹ U	_] 22	U^{33}		U^{12}		U^{13}	U ²³
C1 0.	0159 (7) 0	.0142 (6)	0.0154 (7))	0.0005 (5)		0.0020 (5)	0.0008 (5)
C2 0.	0166 (7) 0	.0171 (7)	0.0225 (8))	0.0036 (6)		0.0032 (6)	0.0011 (6)
C3 0.	0140 (7) 0	.0215 (7)	0.0243 (8))	0.0029 (6)		0.0003 (6)	0.0069 (6)

supplementary materials

C4 C5 C6 C7 Cu1 N1 N2 N3 S1	0.0167 (7) 0.0164 (7) 0.0187 (7) 0.0168 (7) 0.01194 (13) 0.0130 (6) 0.0154 (6) 0.0261 (7) 0.0235 (2)	0.0224 (8) 0.0187 (7) 0.0201 (7) 0.0183 (7) 0.01631 (13) 0.0152 (5) 0.0190 (6) 0.0213 (7) 0.0293 (2)	0.0177 (8) 0.0159 (7) 0.0176 (8) 0.0175 (8) 0.01273 (14) 0.0143 (6) 0.0140 (6) 0.0255 (8) 0.0251 (2)	-0.0027 (6) -0.0008 (6) 0.0052 (6) 0.0037 (6) 0.00240 (9) 0.0009 (5) 0.0017 (5) -0.0016 (6) -0.00253 (17)	-0.0030 (6) 0.0001 (6) -0.0015 (6) 0.0027 (6) -0.00107 (9) 0.0004 (5) -0.0006 (5) -0.0033 (6) -0.00159 (16)	0.0016 (6) -0.0009 (5) -0.0049 (6) 0.0057 (6) -0.00347 (9) 0.0000 (5) -0.0019 (5) 0.0040 (6) -0.00652 (17)
Geometric param	neters (Å, °)					
C1—N1		1.3430 (19)	C6—N2		1.4775	5 (18)
C1—C2		1.393 (2)	С6—Н6	A	0.9900)
C1—C6		1.506 (2)	С6—Н6	В	0.9900)
C2—C3		1.383 (2)	C7—N3		1.160 (2)	
С2—Н2		0.9500	C7—S1		1.6440	0 (16)
C3—C4		1.385 (2)	Cu1—N	2	2.0062	2 (12)
С3—Н3		0.9500	Cu1—N	2 ⁱ	2.0062 (12)	
C4—C5		1.382 (2)	Cu1—N	1	2.0288	3 (12)
C4—H4		0.9500	Cu1—N	1 ⁱ	2.0288	3 (12)
C5—N1		1.3466 (19)	N2—H2	2A	0.9200)
С5—Н5		0.9500	N2—H2	B	0.9200)
N1—C1—C2		121.85 (14)	C1—C6	—Н6В	109.8	
N1—C1—C6		115.83 (12)	Н6А—С	С6—Н6В	108.2	
C2-C1-C6		122.32 (13)	N3—C7	—S1	178.26	5 (15)
C3—C2—C1		118.90 (14)	N2—Cu	$1-N2^{i}$	180.0	
С3—С2—Н2		120.5	N2—Cu	1—N1	81.33	(5)
C1—C2—H2		120.5	N2 ⁱ —Cu	u1—N1	98.67	(5)
C2—C3—C4		119.23 (14)	N2—Cu	1—N1 ⁱ	98.67	(5)
С2—С3—Н3		120.4	N2 ⁱ —Cu	u1—N1 ⁱ	81.33	(5)
С4—С3—Н3		120.4	N1—Cu	$1-N1^{i}$	180.0	
C5—C4—C3		118.84 (14)	C1—N1	—C5	118.81	(13)
С5—С4—Н4		120.6	C1—N1	—Cu1	113.68	(10)
C3—C4—H4		120.6	C5—N1	—Cu1	127.49	0 (10)
N1-C5-C4		122.33 (14)	C6—N2	—Cu1	109.43	6 (9)
N1—C5—H5		118.8	C6—N2	—H2A	109.8	
C4—C5—H5		118.8	Cu1—N	2—H2A	109.8	
N2—C6—C1		109.56 (12)	C6—N2	—H2B	109.8	
N2—C6—H6A		109.8	Cu1—N	2—H2B	109.8	
CI—C6—H6A		109.8	H2A—N	N2—H2B	108.2	
N2-C6-H6B	-	109.8	.			
NI-C1-C2-C	3	-0.9 (2)	C6—C1	—N1—Cu1	3.52 (1	16)
$C_{0} - C_{1} - C_{2} - C_{3}$	5	179.38 (14)	C4—C5	-NI-CI	-1.7 (2	2) L (11)
$C_1 - C_2 - C_3 - C_4$	+ 5	-0.7(2)	C4—C5	-INI $-$ CUI	1/6.34	F(11) F(10)
$C_2 - C_3 - C_4 - C_3$	J	1.1(2)	INZ—Cu		-17.99	(10)
C3—C4—C5—N	1	0.1 (2)	N2 ¹ —Cu	u1—N1—C1	162.01	(10)

N1-C1-C6-N2	19.63 (18)	N2—Cu1—N1—C5	10	63.84 (13)
C2-C1-C6-N2	-160.67 (14)	N2 ⁱ —Cu1—N1—C5	-1	16.16 (13)
C2-C1-N1-C5	2.2 (2)	C1—C6—N2—Cu1	-1	33.03 (14)
C6—C1—N1—C5	-178.14 (13)	N1—Cu1—N2—C6	27	7.99 (10)
C2-C1-N1-Cu1	-176.18 (11)	N1 ⁱ —Cu1—N2—C6	-	152.01 (10)
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$				
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N2—H2A····N3 ⁱⁱ	0.92	2.27	3.0717 (19)	145
N2—H2B···S1 ⁱⁱⁱ	0.92	2.60	3.4628 (13)	156
Symmetry codes: (ii) x , $-y+1/2$, $z-1$	/2; (iii) $-x$, $y+1/2$, $-z+1/2$.			

Fig. 2